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Abstract

This paper investigates the flow past an elastically-mounted
cylinder, constrained to oscillate in the cross-stream direction,
which is then externally forced to perform rotational oscilla-
tions. The motivation for this study is the enhancement of cross-
stream oscillations of the body. These oscillations can be used
to drive a generator, and therefore used as a renewable energy
technology. More generally, this forcing is treated as an open-
loop control strategy of the wake and the resulting cylinder os-
cillations.

The system tested is such that its natural structural frequency,
fn, is close to the vortex shedding frequency from a stationary
cylinder. This means that with no forcing, the cylinder oscil-
lations, and the periodic vortex shedding that characterizes the
wake, are synchronized.

Numerical simulations have been conducted for a range of forc-
ing frequenciesfn/2leqslant fd 6 2 fn, and the effect of the forc-
ing on this base, synchronized case determined. It is shown
that the forcing can significantly increase the peak oscillation
amplitude, and that the wake and cylinder cross-stream oscilla-
tion remains synchronized to the rotational driving over a sig-
nificant range of driving frequencies. Outside of this synchro-
nized range, the flow is shown to be typically quasiperiodic,
with modulated oscillations around the system natural structural
frequency.

Introduction

Slender bodies with bluff cross sections, such as cylinders, im-
mersed in a freestream with their axis perpendicular to the flow,
susceptible to a range of flow-induced vibration (FIV) phenom-
ena. For circular cylinders, which do not have a defined angle of
attack, the most likely phenomenon to occur is vortex-induced
vibration (VIV). This occurs due to periodic vortex shedding in
the wake. This periodic shedding (where a vortex is shed from
one side of the body, then a vortex of opposite sign is shed from
the other side of the body, forming the ubiquitous Kármán vor-
tex street) generates a periodic loading on the cylinder in the
cross-stream direction. When this vortex shedding frequency
is close to a natural structural frequency, large-amplitude oscil-
lations can occur in a resonance-type response. Moreover, the
vortex shedding frequency will change to match or synchronize
with the body oscillation frequency, leading to large, periodic
oscillations.

A focus of recent research has been harnessing these oscilla-
tions as a potential renewable energy source [2, 1]. For this to
be viable, control methods that maximize the energy transfer
from the flow to the structure need to be investigated.

The control strategies available are numerous, but can be bro-
ken into two main categories. Closed-loop control relies on tak-
ing a measurement of the flow that in some way represents its
global behaviour (practically, this means measuring at a point

or set of points with a probe or pressure tap) and varying some
kind of control forcing (such as driving the body) based upon
these measurements. Open-loop control does not have this feed-
back loop, and instead the control forcing is prescribed. While
closed-loop control offers greater flexibility, open-loop control
is far simpler, and often more practical in engineering applica-
tions.

Open-loop control can be further divided into passive and ac-
tive methods. Passive methods require no energy input, and are
typically based on geometric changes, such as adding strakes,
bumps, or varying the angle of attack.

With regard to cylinder wakes (which are nominally two-
dimensional, or at least dominated by two-dimensional struc-
tures), a number of studies exist investigating active open-loop
control methods, especially those based on harmonically forc-
ing the body in one particular degree of freedom. These in-
clude forcing in the cross-stream direction [3, 9, 18, 4, 11],
the streamwise direction [7, 12, 5, 10], and rotational forcing
[8, 13, 15, 16, 6]. Two common themes arise from these stud-
ies. First, the wake can be synchronized to the forcing, resulting
in a purely periodic flow with high spanwise correlation, over
particular bands of forcing frequencies. Second, these bands
of frequencies are essentially governed by the spatio-temporal
symmetry of the forcing as compared to the spatio-temporal fre-
quency of the unforced Ḱarmán vortex street. The consequence
of these two results is that forcing of the body that respects the
symmetryu(x,y, t) = u(x,−y, t + T/2), whereu is a velocity
component,x andy spatial coordinates,t is time andT is the
period of the forcing, will typically see synchronization of the
flow to the forcing when the frequency of the forcing is close
to the vortex shedding frequency (or Strouhal frequencyfSt) of
the unforced system.

In this paper, the concept of wake control by harmonic forcing
is extended to the control of VIV. The forcing using is oscilla-
tory rotation of the cylinder. The complicating factor in VIV is
the interaction between the wake and the body that naturally oc-
curs. Rather than an interaction between the driving frequency
fd and the Strouhal frequencyfSt, there is three-way interaction
betweenfd, fSt, and the natural structural frequencyfn. For
this reason,fn is set to a value close tofSt so that the unforced
system has the vortex shedding and body motion synchronized.
The amplitude of the forcing is fixed to a value large enough to
ensure a significant impact on the flow. The forcing frequency is
then systematically varied and the response of the system quan-
tified. Very large periodic oscillations of the body are recorded
that are shown to be amenable to energy generation.

Methodology

Two-dimensional simulations have been conducted using a
spectral element code solving the incompressible Navier-Stokes
equations. The accelerating frame of reference is attached to the
cylinder, the acceleration found by solving the simple harmonic
equation of motion of the elastically-mounted cylinder. The use



of this method means no mesh deformation is required to ac-
count for the body motion. Details of the method and its use
for similar problems can be found in [17, 11]. The prescribed
oscillatory rotation is implemented simply by prescribing the
tangential velocity on the surface of the cylinder over time.

The rotational forcing is prescribed by the function

θ = A∗ sin(2π fdτ), (1)

whereθ is the angular displacement of the cylinder surface,A∗

is the amplitude of the oscillation in radians, andfd is the nondi-
mensional forcing or driving frequencyfd = f D/U , where f
is the forcing frequency. All simulations used an amplitude
A∗ = π/2, resulting in peak-to-peak oscillations of a half a
rotation. The Reynolds numberRe = UD/ν, whereU is the
freestream velocity,D is the cylinder diameter, andν is the kine-
matic viscosity, is fixed atRe = 200. The natural frequencyin
vacuo, fn =

√

k/m/(2π), wherek is the spring stiffness coeffi-
cient, andm is the mass of the body, is fixed atfn = 0.2. The
mass ratiom∗ = m/m f , wherem f is the mass of the fluid dis-
placed by the body, is set tom∗ = 1. No mechanical damping
has been added to the system.

Results

Figure 1 shows the maximum amplitude of oscillation as a func-
tion of the driving frequencyfd. The driving frequency spans
the rangefn/26 fd 6 2 fn. It is clear that the forcing has a huge
influence on the amplitude, with oscillations up to 300% larger
occurring with respect to the unforced case. This maximum am-
plitude occurs atfd ≃ 0.14, or for a forcing frequency around
70% of fn.

An intriguing feature of the system shown in figure 1 is the re-
sponse whenfd = fn. It might be expected that when these two
frequencies coincide, the amplitude would be largest through a
resonance-type response. However, figure 1 shows that the am-
plitude is essentially unaffected by the forcing at this frequency,
with a minor decrease with respect to the unforced case.

The observation of very large amplitudes for low frequency
forcing, and unaffected amplitude for forcing atfn, seem to be
explained by considering the spacing of the shed vortices in the
wake. A classic inviscid result from von Kármán discussed fur-
ther by [14] is that the ratio of the lateral to longitudinal spacing
of vortices in the Ḱarmán wake tends towards a preferred value
of around 0.281. If the vortex shedding is reduced in frequency,
but the convection speed of a given vortex remains the same, the
longitudinal spacing between vortices will increase. To main-
tain the spacing ratio, this increase in longitudinal spacing must
result in an increase in lateral spacing. The further a vortex
is moved laterally, the more transverse force it will exert on
the cylinder. A larger transverse force could reasonably be ex-
pected to result in larger amplitude oscillation, as is observed at
low frequencies. The same argument says that if the frequency
is unchanged (as occurs whenfd = fn), the vortex spacing in
unchanged, and the transverse force and therefore amplitude of
oscillation is unchanged.

This argument only applies for as long as the wake and vortex
shedding is synchronized with the oscillatory driving. Figure
2 shows the frequency content of the measured lift force as a
function fd. The plot was created by taking the frequency spec-
trum of the lift force history for each value offd and stacking
them next to each other. For each value offd, the power in the
spectrum has been normalized by the maximum power. This
means that the power for a given frequency component cannot
be directly compared acrossfd, but it gives a very clear picture
of which frequencies are dominant in the response as a function
of fd.
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Figure 1: The peak amplitude of transverse oscillation as a func-
tion of the driving frequencyfd. The solid vertical line marks
fn, the dotted horizontal line marks the amplitude of the un-
forced case. The gray shaded region marks the range offd for
which the wake is synchronized with the driving.
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Figure 2: Frequency content of the lift force as a function of the
driving frequency. The frequency content for a given value offd
was determined using a Fourier transform, and then the spectra
for all values offd stacked next to each other. The spectrum for
each value offd has been normalized by the maximum power
in the spectrum. The plot shows that the flow is dominated by
the driving frequency over the range 0.14< fd < 0.24, and gov-
erned by the driving frequency and a second frequency related
to the natural frequency outside of this range.

It is clear that over the range 0.14< fd < 0.24, the frequency
response of the wake is dominated by the driving frequency.
Either side of this range the frequency response primarily con-
sists of the driving frequency, and a second frequency that is
close to, but lower than, the driving frequency. This second fre-
quency decreases as the frequency of the driving increases. This
appears to be an added mass effect, where the entrained fluid in
a layer near the body acts as mass that needs to be moved by the
oscillating body. This means the apparent mass of the body is
larger than its actual mass, and therefore the natural frequency
is lowered.

Images of instantaneous snapshots of the wake are shown in
figure 3. A series of images are shown over a range of driving
frequencies where the wake is synchronized to the driving. This
series shows that with increasing driving frequency, the lateral
and longitudinal spacing of the wake vortices decreases, result-
ing in smaller transverse forces, in agreement with the argument
outlined above.

With respect to energy generation, large oscillations are only of
use if they are in phase with the force producing them. Only in
this way do the forces impart work on the structure, and hence
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Figure 3: Snapshots of the wake over a range of driving frequencies: (a) fd = 0.15; (b) fd = 0.20, (c) fd = 0.24. Colour contours are of
vorticity between levels±1. The images show that with increasing frequency, the lateral and longitudinal spacing of the wake vortices
decreases, resulting in smaller transverse forces.
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Figure 4: The average phase between the lift force and the trans-
verse body oscillation, over the range of driving frequencies for
which the flow remains synchronized to the driving. The solid
vertical line marksfn, the dotted horizontal line marks a phase
of φ = π. The phase remains close to zero where the amplitudes
of oscillation are the biggest, favourable for energy transfer.

transfer energy from the flow to the structure. Therefore, a mea-
sured phase between the lift (transverse) force and the body
transverse oscillationφ ≃ 0 is favourable for energy transfer,
while a phaseφ ≃ π indicates close to no work can be done on
the cylinder.

Figure 4 plots this phaseφ over the range of driving frequencies
where the flow is synchronized to the driving frequency. The
phaseφ was calculated by finding the maximum of the cross-
correlation between the two signals. It shows that for driving
frequencies less than the natural frequency,fd < fn, the phase
remains very close to zero. However, forfd > fn, there is a
phase jump toφ ≃ π.

This result, coupled with the results shown in figure 1 that the
amplitude of oscillation is greatest for the lowest frequencies
in the synchronized range, indicates that significant increases in
energy transfer from the fluid to the structure, with respect to
the unforced case, are possible using oscillatory oscillation. Of
course, this oscillation comes at an energy cost, and it remains
to be seen if the increase in energy transfer from the fluid to the
body offsets the cost of the control (this cannot be directly mea-
sured from the current simulations as the actual energy transfer
is, and must, be zero, as there is no mechanical damping to dis-
sipate energy). However, it can be shown that as the driving
frequency decreases, the energy required for the control also
decreases.

Figure 5 shows the work done by the rotation of the cylinder
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Figure 5: The average power required for the rotational con-
trol over a period of oscillation, as a function of the driving
frequency. This shows that low frequencies of driving, where
the amplitudes of transverse oscillation are greatest (and poten-
tial energy generation is the highest), cost the least in terms of
energy.

on the fluid per period of oscillation. This is calculated by tak-
ing the negative of the integral of the product of the torque and
the cylinder angular velocity over one period of oscillation, and
normalizing by the period of oscillation, according to the for-
mula

PT =
1
T

Z τ+T

τ
M ·ωdτ, (2)

wherePT is the nondimensional average power,T is the period
of the forcing,τ is nondimensional time,M is the moment or
torque, andω is the angular velocity of the cylinder. The fig-
ure shows that the power required for the control increases ap-
proximately quadratically with the driving frequency, but most
importantly is smallest where the recorded amplitudes of oscil-
lation are the largest.

Conclusions

The results of this paper show that the rotational oscillation
of an elastically-mounted cylinder can have significant conse-
quences for the flow and resulting transverse oscillations. Very
large oscillations, with a phase such that energy transfer from
the flow to the structure is highly likely, can be obtained for a
relatively small energy cost. It is therefore concluded that rota-
tional oscillation is a promising open-loop control strategy for
the optimization of energy generation devices based on vortex-
induced vibration.
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